
A Novel Technique for Real-Time Internet Radio Recorder on Non-DSP
Embedded System

Lain-Jing Hwang1, Chien-Chou Shih2, I-Ting Kuo1
1Department of Computer Science and Information Engineering

Tamkang University, Tamshui, 251, Taipei, Taiwan
micro@mail.tku.edu.tw

2Department of Information and Communication
Tamkang University, Tamshui, 251, Taipei, Taiwan

ccs@mail.tku.edu.tw

Abstract

The capability of providing real-time multimedia

player over the Internet is an important future
application for embedded system. However, the main
challenge of such an application is the limitation on
computation performance and memory size in
architecture of embedded system, especially while
encoding and decoding. In this paper, a Streaming
Packet Tracer (SPT) algorithm is proposed for real-
time tracing the streaming packet header. Based on the
SPT algorithm, we present a novel software-based
technique which enables a non-DSP embedded system
to play and record real-time streaming audio
simultaneously. To verify the feasibility of the proposed
technique, a real-time Internet radio recorder has been
implemented on SBC-2410x embedded system
successfully. The experimental results show that our
achievement has reduced the CPU usage rate from
over 100% to about 30%-40% in comparison with
other recording method.

Keywords: Embedded system, real-time Internet radio
recorder, SBC-2410x.

1. Introduction

Streaming technology [1][2] provides the means of
delivering news, entertainment, remote education,
documentary, and many other types of communication.
With the development of processor design technology
for resource constrained SoC (System on Chip) [21], it
becomes reality to implement streaming audio decoder
in real time on a single RISC core embedded system.

However, there are problems of computation
performance and storage consumption on a single core
embedded system while recording streaming audio in
the popular audio format, such as MP3, WMA and
WAV etc. In this paper, Mplayer [3] is executed on the
ARM9 core embedded system as software-based
internet-radio recorder, by which users can connect to
the media server to receive and record network
streaming audio.

In order to achieve this goal, a Streaming Packet
Tracer (SPT) algorithm is proposed. The SPT
algorithm synthesizes advantages of the generally
recording methods, by which no extra encoding
procedure is needed, and no further space to store a
WAV audio file is required. On one hand the streaming
packet head could be detected by SPT and be recorded
in files, and on the other, the associated streaming files
could also be used for real-time player by offering
frame buffer directly.

The remainder of this paper is organized as follows.
Section 2 describes the general methods for audio
recording, the proposed SPT method for real-time
recording, handling the packet loss problem on
network streaming and format-change problem are
revealed in section 3. Section 4 is the experimental
results and comparisons. Finally, the conclusions and
future research are discussed in section 5.

2. Methods for real-time audio recording

In this section, two generally methods for audio
recording are discussed, revealing their weaknesses
and why these methods are not suitable to implement

2008 International Conference on Multimedia and Ubiquitous Engineering

978-0-7695-3134-2/08 $25.00 © 2008 IEEE
DOI 10.1109/MUE.2008.36

96

real-time audio recorder on non-DSP embedded
system.

2.1 Recording a streaming audio in WAV
format

Recording streaming audio in WAV format is an
intuitive approach. As shown in Figure 1, streaming
audio datagrams can be decoded in WAV file, which
then is copied directly.

Figure 1. Recording streaming audio in WAV format

Using this method, there are two optional

approaches regarding the processing file-copy routine.
The first is that to ignore the copy routine and output
the WAV [8] format file directly. However, while
decoding the downloaded streaming audio, sound
cannot be played. The second way is to copy an extra
file for recording.

The advantage of recording by this method is that it
does not need to perform extra compression and can
save the time to handle the decoded file. However,
since the WAV file is a lossless audio format, the
embedded system must be equipped with extra storage.
For instance, a 4 minutes song with 44.1 KHz
sampling frequency will need extra storage to save the
WAV file as follows:

Size = 44,100 * 2 * 2 * 4 * 60= 42, 336, 000Bytes

= 40.37MB (1)

Since it just copies the raw data, no extra CPU

computation for encoding an audio is needed. However,
this method is unsuitable to the implement of a real-
time audio recorder on a single core embedded system
such as SBC-2410x due to its heavy use of storage.

2.2 Recording a streaming audio in compressed

format

With the rapid advance of Internet technologies,
several common compressed audio formats, such as
WMA [8], Ogg [10], MP3 [9], RM, RAM, and RA
[11], are provided for the reason of saving the
bandwidth. Therefore, almost all the streaming media
technologies have employed compression audio format
for delivery with enough CPU power and bus
bandwidth to support the required data rates.

While recording a streaming audio in compressed
format on the embedded system, as shown in Figure 2,
the player encodes the streaming audio to a pre-defined
format and saves the compressed file at the same time.
This method can not only save the storage size, but
also reduce the transmission time.

Figure 2. Recording streaming audio in compressed

format

Comparatively, recording an audio in compressed
format can reduce almost 10 times of storage size. For
example, suppose that a digital audio format file is CD
acoustic fidelity and the sampling frequency is 44.1
KHz, the bit rate can be calculated as follows:

Bit rate = 44.1 * 1,000 * 16 * 2 = 1411.2 kbps (2)

If the choice bit rate is 128 kbps for standard bit rate

quality of MP3 audio, the compressed rate is:

Compressed rate = 1,411.2/128 = 11.025 (3)

For example, for recording a 4 minute song, the

required size to save this audio file is:

Size = 42, 336, 000 Bytes/11.025
= 3, 840, 000 Bytes = 3.66 MB (4)

Thus, this method can reduce 90.93% of storage

size in comparison with previous approach. However,
the player must decode and encode the streaming audio
at the same time. Due to the complex computation of
the decoding and encoding processes, limited hardware
concerning CPU power for the embedded system is
another problem. That is, the method of recording a
streaming audio in compressed format can not work on
a non-DSP embedded system.

3. New method for real-time recording

streaming audio

3.1 Streaming Packet Tracer (SPT) algorithm

The Real-time Transport Protocol (RTP) [5][6][7]
defines a standardized packet format for delivering
audio and video over the Internet. It provides the
common media transport layer, where uncompressed
media data (audio data) is captured into a buffer from

97

which compressed frames are produced. Frames may
be encoded in several ways depending on the
compression methods. The compressed frames are
loaded into RTP packets for transmitting, and these
may be fragmented into several RTP packets. A
receiver is responsible for collecting the RTP packets
from the network streaming, and insert them into a
play out buffer, then decode for corresponding audio
format and play it.

In this paper, we propose a novel method (SPT) for
real-time recording which not only reduce the
computing load, but play and record streaming audio at
the same time with minimum extra storage (Figure 3).
Algorithm 1 shows the tracing procedure for real-time
recording. When end-user requests to a media server
for recording the streaming audio through the Internet,
the record flag will be set to true, then the player will
get local time as record-file name and open the record-
file for recording (Algorithm 1 line 1-7). Whilst
receiving streaming datagrams, if the player fills
stream buffer, then the corresponding packet header
and payload in the streaming buffer are traced before
the streaming media audio is decoded as well as the
length of the buffer is also derived. Subsequently, the
program will copy the buffer and write it to the record-
file for real-time recording (line 10-23 in Algorithm 1).
Finally, when user stop recording, then the record flag
will be set to false and the record-file is closed (line
26-31 in Algorithm 1). To perform the proposed
algorithm, the source code of Mplayer was modified
and the position of the streaming data buffer, required
to copy streaming data for recording, is found. The
above procedure must be done before filling out frame
buffer to prevent the audio packet header from being
trimmed off.

Figure 3. Real-Time recording with SPT algorithm

Algorithm 1: Streaming Packet Tracer (SPT)
Require: buffer: array[0..MAXBUFFER] of char;

{array for stream buffer (data)}
rfp: FILE Pointer; {File pointer for record file.}
len: integer; {Stream Buffer Length.}
rf: bool; {Record flag.}
fn: array[0..40] of char; {Char array for file name.}

Ensure: Find the packet header and payload to record.
packet header and payload to record.
1: {Init to record}
2: if Need to Record then

3: rf = true;
4: fn = Get now time for record name;
5: rfp = open(fn,O_CREAT |O_WRONLY);
6:
7: end if
8:
9: {Start to record}
10: while Get network stream do
11:
12: do Fill stream buffer;
13:
14: buffer = Get the packet header and payload;
15: len = length[buffer]; {Get length for stream
buffer}
16: if rf == true then
17: if write(write(rfp, buffer, len) ! = len)) then
18: do Record file for write Error.
19: end if
20: end if
21:
22: end while
23:
24: {Terminate to record}
25: if don’t want Record then
26: rf = flase;
27: close(rfp);
28:
29: end if

3.2 Packet loss handling for UDP

Since real-time streaming recorder is a kind of time-

sensitive application, which often use UDP
[12][13][14] because dropped packets are preferable to
delayed packets. Omitting to check whether every
packet actually arrived makes UDP faster and more
efficient. However, UDP does not guarantee reliability
or ordering in the way that TCP does [13][15].
Datagrams may arrive out of order, appear duplicated,
or go missing without notice.

In the implementation, there must make some
efforts to handle the packet loss problem. When the
player receives the streaming data, a pre-defined
threshold value is used to decide if the received the
packets are accepted, as shown in Figure 4. If the sum
of packet losses is greater than the threshold value, it
will fail to open the streaming datagram. As shown in
Figure 5, a new packet format, which includes a 4-byte
sequence number field, can be used for application
layer to judge whether it receives the streaming packet
in correct sequence or not.

98

Start

Receive one
Packet ?

Counter+1

Counter>
threshold ?

Yes

Yes

No

No

Yes

Packet Lost

Accept this
packet

Counter<=
threshold ?

Counter=0

End

Packet Error

No

Figure 4. Flowchart of Packet loss detection

Figure 5. Sequence number section

3.3 Detection of Format-change

When dealing with real-time audio decoding, the
audio files with different formats may be downloaded.
The corresponding decoder should be taken to perform
the decoding processes with respect to the file format.
Based on the SPT algorithm, since the streaming data
is traced and directly copied, if the file format from the
same streaming is different, then the audio file for
recording format is also different. This may lead to the
problem of format mismatch and be unable to play the
recorded audio file, because it has two or more file
formats in one file.

In order to solve the format-change problem, the
recording procedure must detect that if the identical
streaming contains more than one audio file, and the
period can transmit header to advice (when changing
audio file). Then the record file is closed for previous
recording, and the next new record file is opened. We
separate the files when changing. In other words, if
there are two or more files for streaming, SPT will take
the file in the same record number with the same file
format.

3.4 Advantages of SPT

Real-time Internet streaming audio player and

recorder for different formats such as MP3, WMA and
OGG etc. is an important future application for low-
cost embedded system. Many such systems thus face
severe limitations in size and computation
consumption. The proposed SPT algorithm gives
consideration to both saving storage and computation
overhead. This method makes it practical to playback
and recodes internet radio at the same time on the
embedded system without powerful calculation
capacity and extra storage. Table 1 shows the
comparisons of different methods for real-time
streaming audio recorder.

Table 1. Comparisons of Real-time streaming audio

recording methods

Method WAV
format

Compressed
format SPT

Time for
recording

No High Low

Extra storage
requirement

Huge small small

Selected audio
format

No Yes No

Playing and
recording at the
same time

 No Yes

4. Experimental results

The Samsung SBC-2410x [4] embedded system
was chosen as the target experiment system in this
research. SBC-2410x is a low-cost embedded system
which bases on Samsung ARM processor (kernel
ARM920T). The PCB board of SBC-2410x has six
levels. It can execute arm-Linux operating system and
Windows CE4.2.net operating system. It is a flexible
and ideal control unit for education robot system. The
detail about SBC-2410x is shown in Table 2.

In terms of software development, the OS and
service components are listed in Table 3.

The proposed method was experimented in an
average 40 Mbps Internet environment. Figure 6(a) and
Figure 6(b) depict the comparisons of CPU usage rate
between different methods while recording stream
audio in MP3 format and Ogg format respectively.
After applying our proposed software implementation
to record a 22 seconds Internet audio from the
streaming media server, the CPU usage rate can reduce
to about 30% - 40% in comparison with the recording
method in re-compressed format. Figure 7 shows that
our implementation can perform the real-time
recording operation successfully and, at the same time,
execute Mplayer normally.

99

Table 2. Hardware of Embedded System

Platform SBC-2410x
CPU S3C2410@200MHz

100MIPS ARM 9 RISC32 Core
Memory 64MB SDRAM

64MB NAND Flash R
1MB NOR Flash

LAN One 10M Ethernet, RJ45 port
SERIAL One DB9 port

USB One USB Host Type A
One USB Slave Type B

Audio One Stereo Audio Output
One Audio Input

Board size 120mm*90mm

Table 3. Software of Platform
Linux kernel Kernel 2.4.18 [16]

Basic commands Busybox 1.2.0 [17]
Telnet login SSH (Dropbear 0.48.1 [18])
Ftp Server vsFTPd 2.0.5 [19]

Web Server Thttpd 2.21b [20]
Open-source
MediaPlayer Mplayer-CBS-20060517 [3]

0 2 4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

Overload

Play and Record in MP3 Format

t = 0 to 22

CP
U

Ut
ili

za
tio

n(
%

)

Recording in WAV Format

SPT Recorder

Time (Sec)

Recording in Compressed Format

(a). Play and record a MP3 audio

0 2 4 6 8 10 12 14 16 18 20 22
0

20

40

60

80

100

Overload

Play and Record in Ogg Format

t = 0 to 22

CP
U

Ut
ili

za
tio

n(
%

)

Recording in Compressed Format

Recording in WAV Format

SPT Recorder

Time (Sec)

(b). Play and record an Ogg audio
Figure 6. Comparisons of CPU utility rate

Figure 7. Implementation of Real-time Radio Recorder

5. Conclusions

In this paper, a novel SPT algorithm was proposed
to achieve the implementation of real-time recording
and playing of streaming audio on a non-DSP
embedded system. Based on the proposed techniques,
neither mass storage nor extra encoding procedure is
spent. As a result, we have successfully developed a
real-time Internet-Radio recorder on SBC-2410x
embedded system, which can tolerate packet-loss and
format-change. Of particular interest is that the system
can efficiently play and record streaming audio at the
same time. Furthermore, our achievement by software
can also make it possible to play and recorder
streaming radio on several non-DSP embedded
systems such as s3c2440, xscale-255 or xscale-270,
etc.

100

References

[1] A. Ganz, Z. Ganz, and K. Wongthavarawa, Multimedia

wireless networks Technologies, standards, and QoS.
Prentice-Hall, 2004.

[2] K. Jonas, P. Kanzow, and M. Kretchmer, “Audio
streaming on the Internet. Experiences with real-time
streaming of audio streams,” in Proc. IEEE Int. Symp.
Industrial Electronics, Vol. 1, Jul. 1997, pp. SS71–
SS76.

[3] “Mplayer: The Movie Player.”
http://www.mplayerhq.hu.

[4] “Samsung.” http://www.samsung.com/tw.
[5] C. Perkins, RTP Audio and Video for the internet.

Addison-Wesley, 2003.
[6] H.Schulzrinne, “RTP: A Transport Protocol for Real-

Time Application.” http://www.faqs.org/rfcs, Jan.
1996. RFC 1889.

[7] V. Hilt, M. Mauve, J. Vogel, and W. Effelsberg,
“Recording and playing back interactive media
streams,” IEEE Trans. Multimedia, Vol. 7, Oct. 2005,
pp. 960–971.

[8] “MicrosoftWindow Media.”
http://www.microsoft.com.

[9] “MP3: MPEG-1 Audio Layer3.”
http://www.thomson.com.

[10] “Xiph Ogg.” http://www.xiph.org/ogg.
[11] “RealNetworks.” http://www.realnetworks.com.
[12] J. Postel, “UDP: User Datagram ProtocolL.”

http://www.faqs.org/rfcs, Aug. 1980. RFC 768.
[13] D. E. Comer, Computer Networks and internets with

internet applications. Prentice-Hall, 4th ed., 2003.
[14] P.P.-K Lam and S.C Liew, “UDP-Liter: an improved

UDP protocol for real-time multimedia applications
over wireless links,” Proc. IEEE Int. Symp. Wireless
Communication Systems, Sep. 2004, pp. 314–318.

[15] “TCP: Transmission Control Protocol.”
http://www.faqs.org/rfcs, Sep. 1981. RFC 793.

[16] “Linux Kernel.” http://www.kernel.org.
[17] “Busybox.” http://www.busybox.net.
[18] “Dropbear.”

http://matt.ucc.asn.au/dropbear/dropbear.html.
[19] “VSftpd.” http://vsftpd.beasts.org.
[20] “thttpd.” http://www.acme.com/software/thttpd.
[21] Nattawut Thepayasuwan, Alex Doboli. “Hardware-

software co-design of resource constrained systems on
a chip”, Distributed Computing Systems Workshops,
Proceedings 24th International Conference, Mar. 2004,
pp. 818-823.

101

